공개SW(Open Source SW)를 중심으로 하는

공간정보 빅데이터 분석 및 실습

01. 공간정보

개요

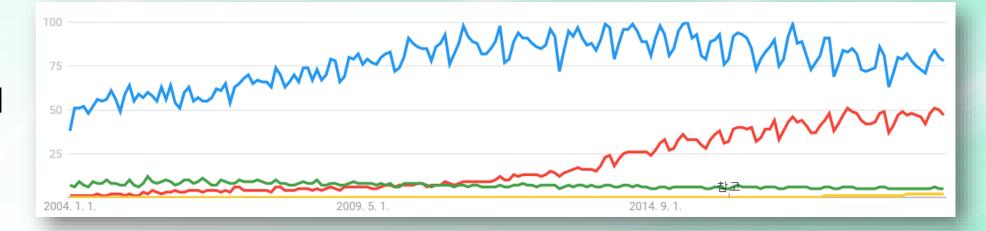
○ 대상

- 공간 빅데이터를 다루고 싶은 개발자
- 파이썬, PostGIS 등 다양한 공개 SW를 다루고 싶은 GIS 분석가

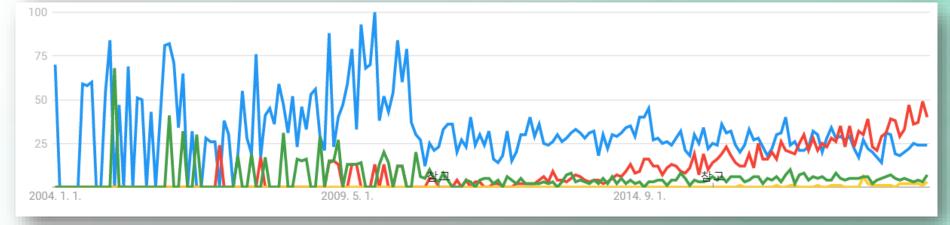
• 주요 범위 및 내용

- 공간빅데이터이지만 Hadoop 또는 NoSQL을 직접 다루지는 않고 공공데이터포털과 같이 주소/좌표가 포함된 CSV 형태로 가공된 데이터에서 시작
- 공간정보(주소/좌표)가 포함된 정보의 전처리, 가공 및 분석 과정을 오픈소스 툴(Python, QGIS, PostGIS) 위주로 진행

GIS 부문 트렌드 분석

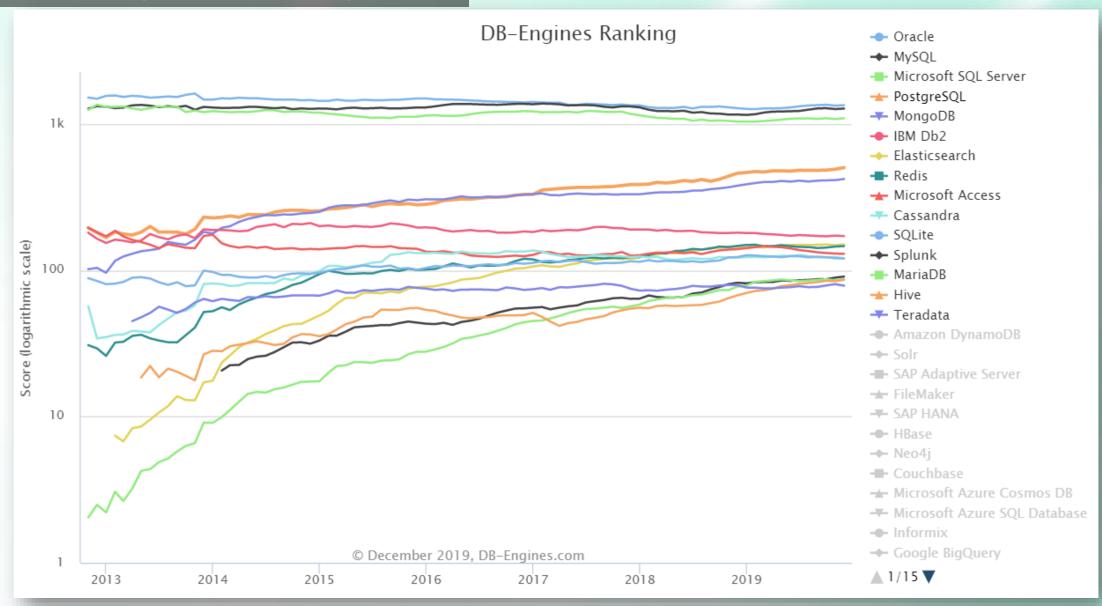

○ 구글 트렌드(trends.google.co.kr). 2004년 이후 ~

ArcGIS


QGISGeopandas

PostGIS

전 세계



대한민국

DBMS Ranking Trends

https://db-engines.com/en/ranking_trend

공간빅데이터 분석 관련 분야

- 공간 빅데이터 분석을 위해서는 다음과 같은 다양한 분야를 다루게 됨
- 본 자료에서는 제약상 스토리에 따른 핵심 기법을 짚어보는 방식으로 진행
- 새로운 Insight의 밑받침이 되는 아이디어와 관련 업무에 대한 이해도도 매우 중요

주요 분석 과정

- 전반적인 분석 과정은 다음과 같음
 - 주제가 주어진 분석과 데이터가 주어지고 데이터의 분석을 통해 새로운 인사이트를 도출하는 방식으로 나눠볼 수 있음
 - 방향 설정부터 데이터의 수집, 전처리 및 기초 가공 등 본격적인 분석 전의 과정이 가장 시간이 오래 걸릴 수 있음
 - 1차 분석 결과를 검토하여 추가 데이터 수집 및 분석 기법을 보완하여 다시 분석을 진행할 수 있음

차시별 주요 내용

1차시	2차시	3차시	4차시	5차시	6차시
공간정보 개요	분석 준비	QGIS 기반 분석	파이썬 기반 분석	PostGIS 기반 분석	시각화 기타
• 주요 공간데이터	• 분석환경 준비	• 데이터 전처리	• 데이터 전처리	• 데이터 전처리	• 시계열
• 공간데이터 제공 사이트	• 주요 분석 과정	• 공간분석	• 공간분석	• 공간분석	• 네트워크
• 좌표계	• 데이터 수집	• 시각화	• 시각화	• 시각화	• 3D
• 공간 분석					
• 공간 시각화					

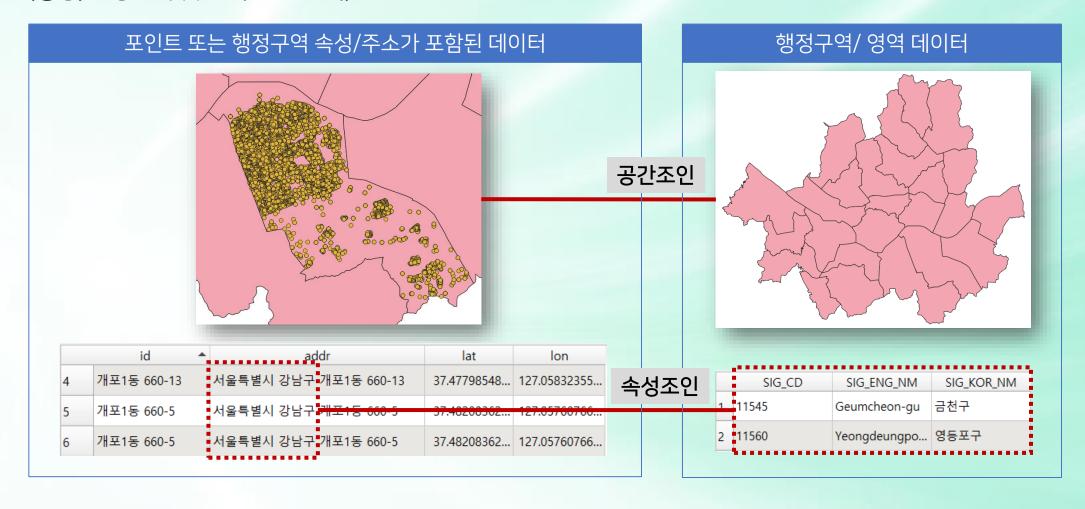
주요 공간 데이터 및 공간정보 포맷

	구분	특성	비고	1
CSV	주소	 CSV 항목에 도로명주소 또는 지번주소(행정동 주소 포함)가 포함된 경우 상세주소(건물번호/ 지번)까지 포함되어 있는지 확인 필요 포털사이트의 API는 대부분 도로명/지번주소가 섞여 있어도 처리되는데, 서비스에 따라 구분이 필요한 경우도 있음 정제된 주소이더라도 () 내 또는 부가 상세주소에 구분자(,)가 포함된 경우로 인한 문제가 가장 빈번하므로 상황에 따라 부가적인 상세주소는 지우고 이용하는 게 더 나을 수도 있음 또한 어떤 지오코딩 서비스를 이용하느냐에 따라 좌표 반환이 실패하거나 유사 주소 좌표로 제공되는 경우가 있음 따라서, 지오코딩 신뢰도를 높이려면 2가지 이상의 지오코딩 서비스를 이용할 필요도 있음 	지오코딩	
	좌표	 CSV 항목에 경도와 위도 항목이 포함된 경우 경도는 대한민국에서 127 등 3자리로 표현되는 동서축 좌표, 위도는 36 등 2자리로 표현되는 남북축 좌표 경위도 좌표계의 경우 소수자리가 최소 6자리 이상 되어야 정확한 위치에 매핑됨 경위도 좌표가 도/분/초(DMS)로 표현되는 경우가 간혹 있음. 분/60, 초/3600하여 합산하면 됨 간혹 TM (6-6자리 숫자 또는 7-7자리) 좌표로 된 경우가 있음. 메타데이터 확인 또는 좌표계 추정 필요 공간적 범위(대상 행정구역/ 한반도)를 벗어나는 공간적 이상치 확인 필요 	집계 (속성)	매핑 (원데이
	(행정)구역	 주소/좌표가 아닌 행정구역 또는 통계적 구역(국가기초구역, 격자 등)에 집계화된 상태 국가통계포털 등을 찾아보면 시군구/ 읍면동 단위로 집계화된 정보들이 있으므로 먼저 확인 필요 반면 시군구 이상 단위로 집계화된 정보를 가지고는 더 세부적인 정보 파악은 어려움 	속성조인	공간조인 (행
	 GIS 분야의 산업 표준(de facto) 포맷 최소 3개의 동일 명칭 파일(shp/ shx/ dbf)이 한 경로(폴더) 내에 있어야 함 dbf 기반이기 때문에 1백만 건 이상의 데이터를 저장할 수 없음. 8자리 이상의 컬럼명 등 제약사항이 있음 좌표계를 정의하면 .prj 파일이 생겨서 다음에 GIS 툴에서 로딩시 좌표계를 인식함 .cpg 파일을 통해 캐릭터셋 인코딩을 인식함 		GeoPackage (/ PostGIS (P	
G	 Json 포맷을 기반으로 점/선/면 Geometry(도형 좌표정보)를 저장하는 포맷 Tool/ 개발언어간 호환시 유용하나 상대적으로 용량이 커서 대용량 데이터 표출(Display)시 빠르지 않음 		Topojson	
• Google 및 국내 포털 등에서 지도서비스를 제공할 때 배경지도를 축척별 타일 이미지로 제공하는 지도서비스 방식 • QGIS/ Python-Folium 등에서 배경지도를 표현할 때 이용		OSM, 브이월드, 포털지도		

지오코딩 방법

○ GEEPS 주소 → 좌표변환서비스

http://geeps.krihs.re.kr/geocoding/service_page

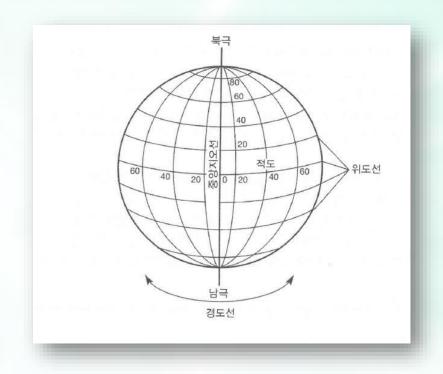

- 포털 등의 지오코딩 API들을 활용하여 변환
- 속도가 느린 편임
- 비즈GIS 지오코딩 툴(Geocoder-Xr)

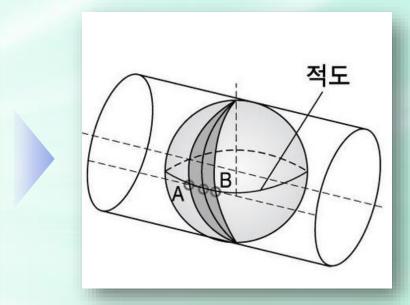
http://geeps.krihs.re.kr/geocoding/service_page

- 아파트 동별 주소까지 지원하나 라이선스가 없으면 일 1만 건까지만 변환 가능
- 포털 및 브이월드 API
 - 네이버, 카카오, 브이월드에서 제공하는 지도 API의 지오코딩 함수를 이용
 - 웹프로그래밍 또는 파이썬 등을 기반으로 코드 구현이 필요

포인트/행정구역 속성 데이터와 공간영역 데이터간의 Join

- 포인트 데이터는 공간조인을 통해 행정구역 또는 영역(그리드 등) 데이터와의 공간조인을 통해 추출/속성 조인
- 주소/관리 행정기관 등의 정보가 담긴 속성데이터는 행정구역과 속성조인을 통해 연계/집계 가능 (행정/법정구역 및 관리 코드 주의)




주요 공간데이터 제공 사이트/기관

사이트	주요 자료	URL	
공공데이터포털	표준데이터, 중점데이터 등 공간/비공간 공공데이터 포털 사이트	www.data.go.kr	
국가공간정보포털	공간정보 위주의 포털 사이트	nsdi.go.kr	
도로명주소	도로명주소를 관리하기 위한 건물 및 도로, 국가기초구역 공간데이터	www.juso.go.kr	
통계청 통계지리정보	행정구역, 집계구(통계구역)	sgis.kostat.go.kr	
기상자료개방포털	기상 관측 데이터	data.kma.go.kr	
데이터스토어	가공 처리된 데이터 포함 (유료 포함)	www.datastore.or.kr	
지방행정인허가 데이터개방	지자체에서 인허가 하는 업종별 업소 정보	localdata.kr	
서울열린데이터광장	서울시 관할 각종 데이터	data.seoul.go.kr	
서울시 빅데이터캠퍼스 *	서울시열린데이터 등을 분석할 수 있는 분석환경 제공	bigdata.seoul.go.kr	
K-ICT 빅데이터센터 *	공공데이터 온라인 및 오프라인 분석환경 제공	kbig.kr	
산림공간정보서비스	임상도, 산사태위험지도 등 산림관련 주제도 제공	www.forest.go.kr	
문화재공간정보서비스	문화재 정보 제공	gis-heritage.go.kr	
환경공간정보서비스	각종 환경 관련 주제도 제공	egis.me.go.kr	
국토정보플랫폼	수치지형도, 항공사진, DEM 등 제공	map.ngii.go.kr	
브이월드*	주요 공간데이터의 목록 및 제공기관을 조회할 수 있음	www.vworld.kr/data/v4dc_svcdata_s001.do	

지리좌표계와 평면직각좌표계(TM)

- 좌표계 정의가 안되어 있으면 지도 상의 제 위치에 표시되지 않을 수 있음
- 다수 레이어의 도시(Map Display)는 물론, 특히 공간연산 시에는 연산하려는 공간데이터들을 동일한 좌표계로 통일해야 빠른 성능 및 오류를 방지할 수 있음
- TM은 지리(경위도) 좌표를 원통에 투영하여 평면직각좌표계로 나타낸 것으로, m 단위로 되어 있어 단위 계산 및 공간 연산에 유리

출처: 공간정보체계의 이해와 활용, 국토정보공사 공간정보아카데미

주요 좌표계 목록

범위	타원체/적용시기	좌표계/원점	EPSG code	적용 지도서비스/ 비고	원점 좌표	가상이동원점 좌표
		TM 서부	5173			
한국	Bessel (~90년대)	TM 중부	5174	연속지적도/ 건물통합정보	경도 127 .0028902777778 , 위도 38	200000, 500000
		TM 동부	5176	(동해, 제주 원점은 편의상 목록에서 제외)		
		TM 서부	5180			
	GRS80 (2000년대)	TM 중부	5181		경도 127, 위도 38	200000, 500000
	(2000 년 대)	TM 동부	5183	(동해, 제주 원점은 편의상 목록에서 제외)		
	GRS80 (2010년 이후	TM 서부	5185			
		TM 중부	5186		경도 127, 위도 38	200000, 600000
세계	(2010년 이후 현재 표준)	TM 동부	5187	(동해 원점은 편의상 목록에서 제외)	경도 129, 위도 38	200000, 600000
		UTM-K	5179/102080	도로명지도/ KTDB 교통주제도/ 정밀도로지도	경도 127.5, 위도 38	1000000, 2000000
		KATECH	-	KTDB 교통주제도	경도 128, 위도 38	400000, 600000
		경위도	4326	GPS		
	WGS84	UTM 52N	32652	한반도 지역 51N~52N/ 정밀도로지도		
		Google	3857	OpenStreetMap, 구글맵, 브이월드맵		

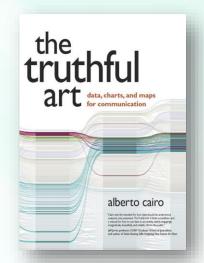
좌표계 확인 방법

○ 좌표계 정보 파일(.prj)이 있는 경우

QGIS 등에 로딩하여 확인. 정상적으로 정의된 좌표계 정보 파일인 경우 QGIS에서
 바로 로딩되고 좌표계 정보를 확인할 수 있음

○ 좌표계 정보 파일이 없는 경우

- 먼저 데이터의 출처/관리기관을 확인: 도로명주소 주제도는 EPSG:5179, GPS 데이터는 EPSG:4326, 지적도는 EPSG:5174일 가능성이 높음
- QGIS에 좌표계 정의하지 않고 로딩하여 도형 자체의 좌표를 보고 좌표계를 추정
- 정수 자리가 127, 38 등으로 표시되는 것은 EPSG:4326
- 동서와 남북축 좌표가 모두 7자리면 UTM-K (EPSG:519)
- 동서와 남북축 좌표가 모두 6자리면 TM 중 하나로 임의의 TM 좌표계를 지정해보면서 추정
- 위의 과정에서 중부원점으로 정의시, 모든 데이터가 배경지도와 동서로 일정 거리가 떨어진 경우 동부원점으로 바꿔서 정의
- 속성 정보의 행정구역/주소 등 확인하여 추정(부산 등 동쪽이면 동부원점 가능성)


좌표계 확인 방법

- 일부 공간데이터가 아직 한국측지계인 경우가 있는데 이는 www.osgeo.kr/17에 정의된 좌표계 정의를 QGIS/Geopandas 상에서 커스텀 좌표계로 정의해줘야 함
 - 배경지도와 300여 미터 정도 비스듬하게 떨어져서 보이는 경우는 한국측지계 (Bessel 타원체)인 EPSG 5174/5176으로 변환계수를 포함한 좌표계 정의를 QGIS 또는 Geopandas에서 정의해줘야 함

공간정보(점/선/면) 시각화

정성

정량

이산/ 범주형 데이터는 심볼모양으로

위계별 행정경계/ 도로는 선의 패턴으로 구분 범주화 영역은 각기 다른 색상 계열을 적용 (Categorized)

Point
Line
Area
Volume

Qualitative
Qualitative
Qualitative

NONE

Quantitative

Figure 10.9 Symbols to encode data on maps.

연속형 데이터는 심볼 크기/ 도형표현도 연속형 데이터는 숫자/선의 두께로 표현 연속형 영역은 동일 색상의 농도차로 표현 (Choropleth/ Graduated)

표고, 건물 높이, 양적 수치 다양한 범주값을 각기 다른 심볼과 색상으로 인지하기 쉽도록

동일 항목의 정량적 차이를 심볼의 크기와 색상의 농도 차이로 인지할 수 있도록

기초 공간데이터의 목적별 가공

HotSpot - 공간적 밀집도 Geographic Heatmap 스타벅스 점포

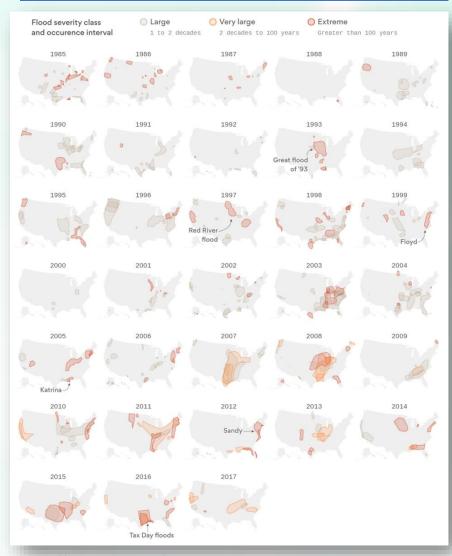
출처: 지아이에스유나이티드

공간상 이동/흐름 Network/ Flow

출처: 국토리지정보원

행정구역/ 격자(그리드) 단위 양적 집계

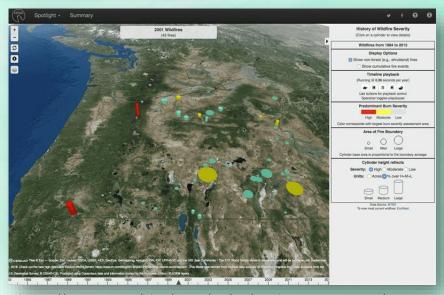
단계구분도 (Choropleth Map) 집계 결과의 순위 표현 지역별 스타벅스 매장 수 2019년 1월 기준. 괄호 안은 리저브매경 30~44 45~59 ■ 60이상 강서 14(1) 출처: 조선비즈


도형표현도 2개 이상의 정량 데이터를 표현 시

출처: 국토리지정보원

시계열 변화 공간시각화

Small Multiples



https://www.axios.com/thirty-years-of-major-flooding-in-the-us-1513305213-b0b6bb49-d101-49ef-bc71-95de30179b80.html

Time-series Animation



https://www.geodose.com/2019/11/how-to-create-animation-map.html

https://cesium.com/blog/2018/03/21/czml-time-animation/

공공데이터 주요 가공, 분석 및 시각화

개략적인 데이터 용량별 분석/시각화 환경

구분	100만 건 또는 1GB 이하	GB 급	10GB 이상 (분산환경/ 클라우드)
일반	• 스프레드시트	PANDASPostgreSQL	HDFS/ SPARKNoSQL
공간	QGIS Desktop(SHP)	GeoPackage(.gpkg)*GEOPANDASPostGIS	• Postgres Advanced Server
시각화	GEOPLOTPLOTLYFOLIUMkepler.gldeck.gl		

참고문헌

- 구글 트렌드, https://trends.google.co.kr/trends/explore?date=today%205-y&geo=KR&q=ArcGIS,%2Fm%2F0ct9z5,%2Fm%2F0ph46,%2Fm%2F02s9k80
- o DBMS 랭킹, https://db-engines.com/en/ranking_trend
- 한국 주요 좌표계 EPSG코드 및 proj4 인자 정리, OSGeo한국어지부. https://www.osgeo.kr/17
- 공간정보체계의 이해와 활용, 국토정보공사 공간정보아카데미 교육
- Alberto Cairo, "The Truthful art"
- 알베르토 카이로, "진실을 드러내는 데이터 시각화의 과학과 예술", 인사이트
- 모토하시 도모미쓰, "데이터 전처리 대전", 한빛미디어
- QGIS 설치, OSGeo한국어지부 블로그, http://blog.daum.net/geoscience/1354
- QGIS 사용자 지침서, https://docs.qgis.org/3.4/ko/docs/user_manual/
- QIGS 교육교재, https://docs.qgis.org/3.4/ko/docs/training_manual/
- QGIS Time Manager 플러그인 사용법, OSGeo한국어지부 블로그, http://m.blog.daum.net/geoscience/988
- QGIS 3D 맵뷰, OSGeo한국어지부 블로그, http://m.blog.daum.net/geoscience/1289

참고문헌

- 민형기, "파이썬으로 데이터 주무르기", 비제이퍼블릭
- PostGIS 설치, OSGeo한국어지부 블로그, http://m.blog.daum.net/geoscience/1237?np_nil_b=2
- 김우미/유병혁, "PostGIS 시작하기", https://www.slideshare.net/ybh0616/postgis-101511460
- PostGIS 프로젝트 운영위원회, "PostGIS 공식 가이드북", https://www.osgeo.kr/231
- PostGIS 사용자 지침서, https://postgis.net/docs/manual-2.4/postgis-ko_KR.html
- 2016년 범죄지도, SBS 마부작침, http://mabu.newscloud.sbs.co.kr/ 20170308crimemap/web/index.html
- 단계구분도 분류기법, https://pro.arcgis.com/en/pro-app/help/mapping/layerproperties/data-classification-methods.htm
- 단계구분도 분류기법,
 http://www.qgistutorials.com/ko/docs/basic_vector_styling.html
- 단계구분도 분류기법, 지아이에스유나이티드 블로그, https://gisutd.tistory.com/7

공개SW (Open Source SW)를 중심으로 하는

공간정보 빅데이터 분석 및 실습

02. 분석 준비

분석 환경 준비

- Windows 10 64bit 환경
- RAM : 최소 8GB, 16GB 이상 권장

	다운로드 및 설치	설치 참조	대체 분석 환경 (완벽하게 동일하지는 않음)	관련/선수 학습
QGIS	www.qgis.org 에서 LTR(장기지원버전)인 3.4.* 64bit 다운로드 및 설치	http://blog.daum.ne t/geoscience/1354	다른 오픈소스 GIS SW	관련 GIS 기초 강좌 선수 학습 필요 - 공간정보아카데미 '공간정보체계의 이해와 활용' - 공간정보아카데미 '공간분석' 관련 과정 - 빅데이터분석을 위한 QGIS Cookbook - https://www.dropbox.com/sh/zku3hqrdrjw2gz 1/AAAIUbL6HsGzq- dJMQ1mG Fqa/20191014 QGIS CookBook?dl =0&subfolder_nav_tracking=1
Python	www.anaconda.com 에서 Python 3.7 64bit 버전 다운로드 및 설치	인터넷에서 "아나콘다 설치"로 검색	Colaboratory 또는 AWS Sagemaker 노트북 등에서 분석 가능 https://colab.research.google.co m/notebooks/welcome.ipynb?hl= ko	관련 (선수) 학습 - 파이썬 기초 문법 - Pandas 기초 문법 - Matplotlib 등 시각화 라이브러리 기초 문법
PostGIS	www.postgresql.or에서 윈도우용 바이너리 패키지 다운로드 및 설치 (버전 9.6 이상)	http://m.blog.daum. net/geoscience/123 7?np_nil_b=2	AWS RDS에서 PostGIS를 지원 https://www.bytelion.com/enablin g-posgis-postgresql-amazon-web -servicesaws-relational-database -servicerds/	관련 (선수) 학습 - RDBMS(관계형 DBMS) 강좌 - SQL - * 공간정보아카데미 오픈소스 GIS 개발자 과정에서 설치 및 공간 SQL 실습 진행

공개(오픈소스) SW 라이선스

- 상용SW는 물론 공개(오픈소스) SW를 활용할 경우에도 라이선스를 확인 필요(특히, 재배포, 상업용 활용 등의 경우)
- 사용하려는 공개SW 사이트에서 라이선스 종류를 확인
 - QGIS의 경우 다운로드(https://qgis.org/ko/site/forusers/download.html)의 소스 탭 페이지에 GPL 라이선스라고 명시되어 있음
- 공개SW포털(https://www.oss.kr/oss_license)에서 주요 라이선스의 제약사항을 확인
 - GPL은 독점SW와 결합이 불가능하고, 2차적 저작물(예를 들어 QGIS를 커스터마이징)을 재공개해야 하는 의무가 있음

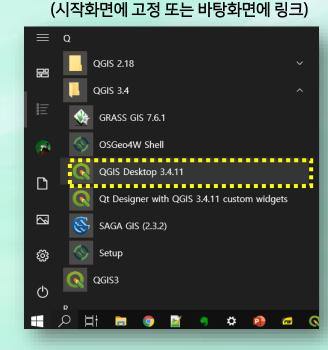
공개(오픈소스) SW 라이선스

○ 주요 공개 SW 라이선스 비교

○ 가능, X 불가능

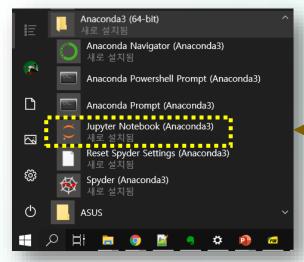
	무료 이용가능	배포 허용가능	소스코드 취득가능	소스코드 수정가능	2차적 저작물 재공개 의무	독점SW와 결합가능
GPL	0	0	0	0	0	X
LGPL	0	0	0	0	0	0
MPL	0	0	0	0	0	0
BCD license	0	0	0	0	X	0
Apache license	0	0	0	0	X	0

QGIS Desktop 설치


1. qgis.org 사이트 접속하여 메인 하단의 다운로드 버튼 클릭

2. 윈도우용 LTR 64bit 버전 다운로드 및 설치

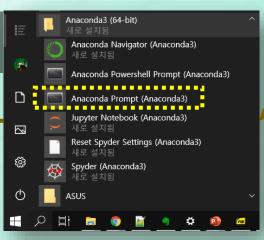
▼ 3. 설치 대화상자는 Next 버튼만 누르면 됨
 설치 완료
 4. 시작메뉴의 QGIS Desktop 실행



Python 기반 분석을 위한 Anaconda 설치

1. www.anaconda.com 접속, 다운로드 클릭

4. Jupyter Notebook 실행


2. 윈도우용 3.7 64bit 버전 다운로드 및 설치

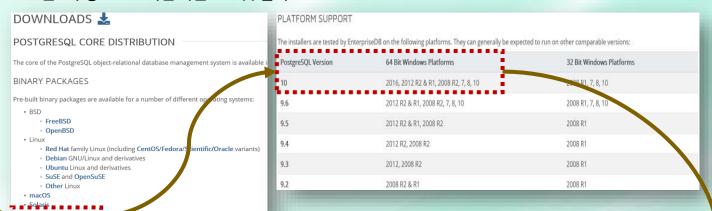
설치 완료

3. Anaconda Prompt 실행하여 Geopandas 등을 추가 설치

conda install -c conda-forge geopandas conda install descartes

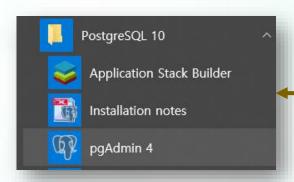
PostGIS 설치 (1)

- PostGIS는 오픈소스 RDBMS인 PostgreSQL에서 공간정보를 다룰 수 있는 Extension(확장팩)으로 기본 설치과정은 PostgreSQL과 같음
- OSGeo 전임 회장인 유병혁님의 블로그 참조


http://blog.daum.net/geoscience/1237?np_nil_b=2)

PostGIS 설치 (1)

1. www.postgresql.org 접속하여 다운로드 버튼 클릭


2. 윈도우용 64bit 버전 다운로드 및 설치

3. 설치 중 Stack Builder 체크하고, PostGIS를 선택 설치

DB Admin 패스워드 설정

4. 시작메뉴의 PostgreSQL 에서 pgAdmin 4 실행 (PostgreSQL 관리 및 SQL 실행 등의 기능 제공)

설치 완료

Please select the applications you would like to install.

Please select the applications you would like to install.

Add-ons, tools and utilities

Database Server

Registration-required and trial products

Replication Solutions

Spatial Extensions

PostGIS 2.4 Bundle for PostgreSQL 10 (32 bit) v2.4.4

PostGIS 2.4 Bundle for PostgreSQL 10 (64 bit) v2.4.4

PostGIS 2.4.4 bundle includes PostGIS 2.4.4 w GDAL 2.2.4, GEOS
3.6.2, Proj 4.9.3, pgRouting 2.6.0, ogr_fdw 1.0.5 spatial foreign data

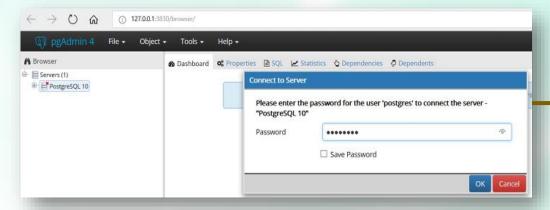
Registration Spatial Foreign data

Cancel

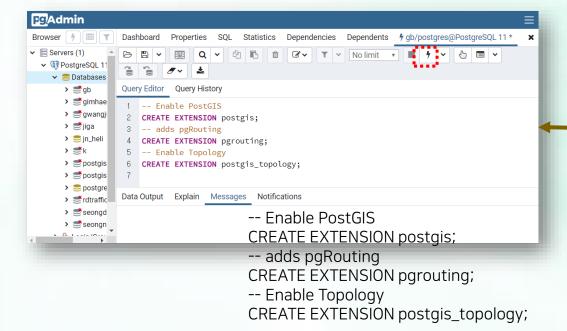
Packaged by:

POSTGRES

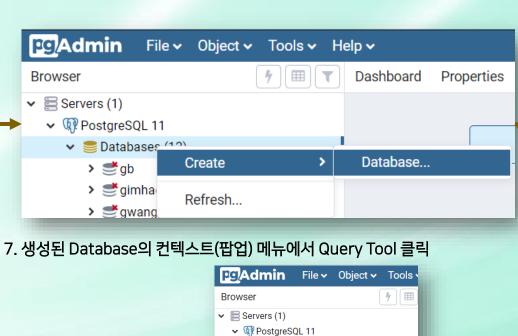
Completing the PostgreSQL Setup Wizard

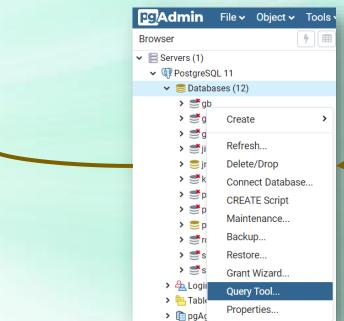

Setup has finished installing PostgreSQL on your computer.

Launch Stack Builder at exit?

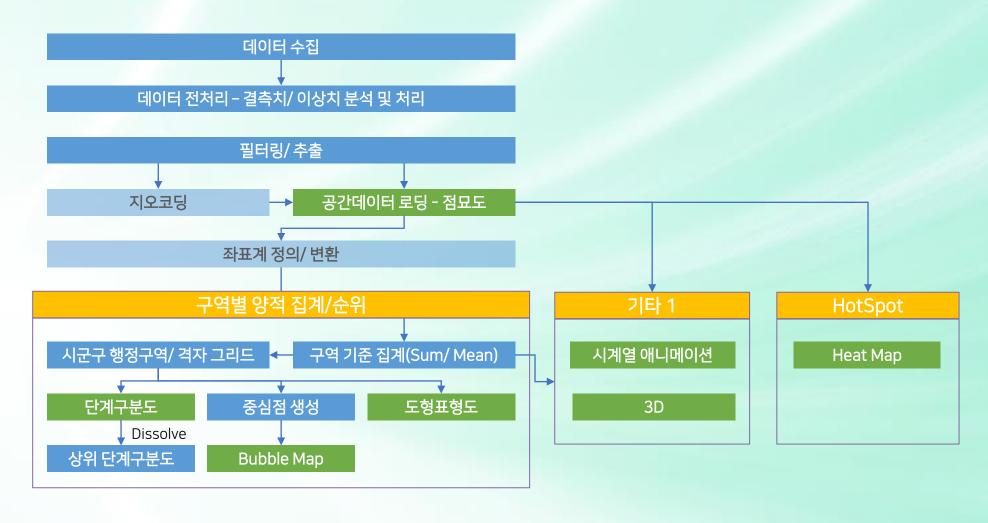

Stack Builder may be used to download and install additional tools, drivers and applications to complement your PostgreSQL installation.

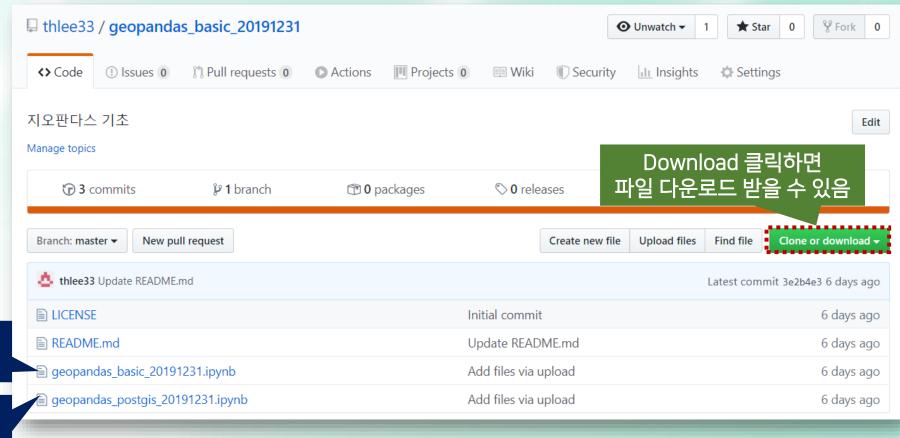
PostGIS 설치 (1)


5. pgAdmin 4의 좌측 Browser 상의 PostgreSQL 10을 더블클릭하여 설치시 설정한 DB관리자 비밀번호를 입력



8. PostGIS 등의 확장 기능 생성 SQL 입력 후, F5 또는 Excute로 실행


6. Database의 컨텍스트(팝업) 메뉴에서 Create Database로 신규 DB 생성


주제 및 분석 흐름/범위

- 주제
 - 공공 도서관을 중심으로 야간 안전 귀가와 관련된 범죄, CCTV, 가로등 등의 데이터를 분석하고 시각화

교육자료 및 파이썬 소스코드

https://github.com/thlee33/geopandas_basic_20191231

5차시 파이썬 기반 실습용 소스코드

5차시 파이썬 기반 실습용 소스코드 (지오판다스-PostGIS 연게)

교육자료도 추가될 예정

데이터 수집

- 도서관
 - 전국도서관표준데이터: https://www.data.go.kr/dataset/15013109/standard.do
- 행정구역
 - 시군구 행정구역: http://www.gisdeveloper.co.kr/?p=2332
- 인구
 - 서울시 학령(청소년)인구 통계: http://data.seoul.go.kr/dataList/datasetView.do?infld=10787&srvType=S&serviceKind=2
- 범죄 통계
 - 서울시 5대 범죄 발생현황 통계: http://data.seoul.go.kr/dataList/datasetView.do?infld=316&srvType=S&serviceKind=2

데이터 수집

CCTV

■ 전국CCTV표준데이터: https://www.data.go.kr/dataset/15013094/standard.do

• 가로등/ 보안등

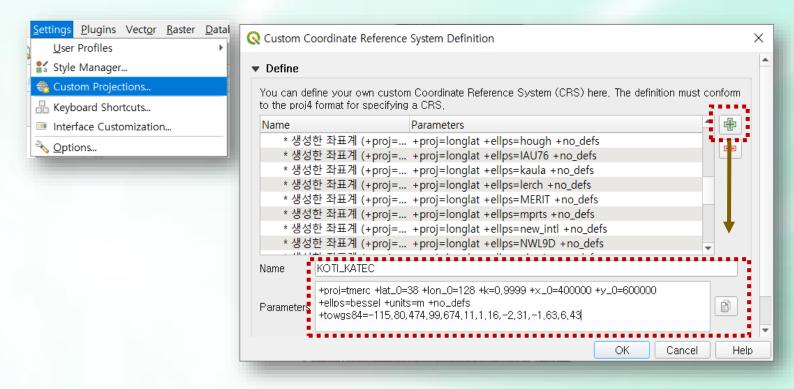
- 전국보안등정보표준데이터: https://www.data.go.kr/dataset/15017320/standard.do
- 가로등: 공공데이터포털에서 지자체별로 제공

○ 실폭도로

- 도로명주소 GIS 데이터: http://data.nsdi.go.kr/dataset/20180918ds00072
 - 수집과정에서 인구 및 범죄가 많은 지자체를 우선적으로 선택하고, 그 중 도서관에서 가장 가까운 대중교통(지하철역)까지를 세부 영역으로 설정하다 보니 자연스럽게 서울시를 1차 영역으로 잡게 됨
 - 특정 지자체 분석시에는 지자체에서 내부적으로 관리하는 데이터를 제공받아 분석할 수 있거나, 필요한 경우 외부 공공/민간기관의 유/무료 데이터 (유동인구-시간대별/성별-연령대별 등)를 추가적으로 이용할 수도 있음

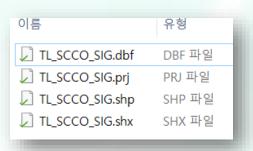
[참조] SBS 마부작침 - 2016년 범죄지도

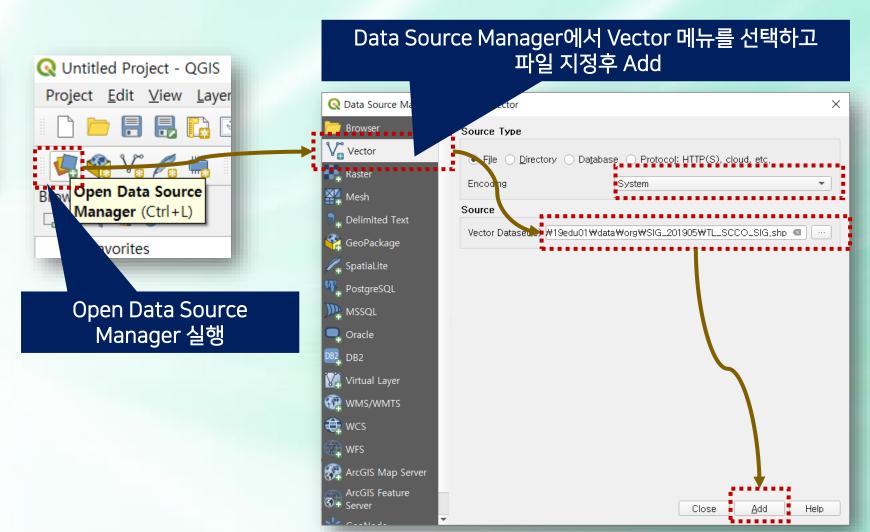
https://news.sbs.co.kr/news/endPage.do?news_id=N1004078662 http://mabu.newscloud.sbs.co.kr/20170308crimemap/web/index.html


QGIS에서 한국측지계 적용

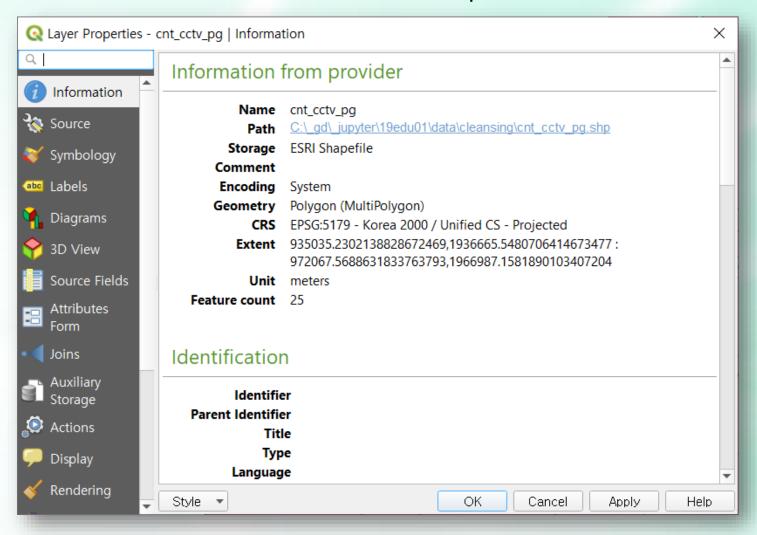
- https://www.osgeo.kr/17 사이트 접속하여 등록할 좌표계 정보를 확인(5174/ 5176/ KOTI-KATEC 정도로 예상)
 - 해당 좌표계의 변환계수 내용을 복사

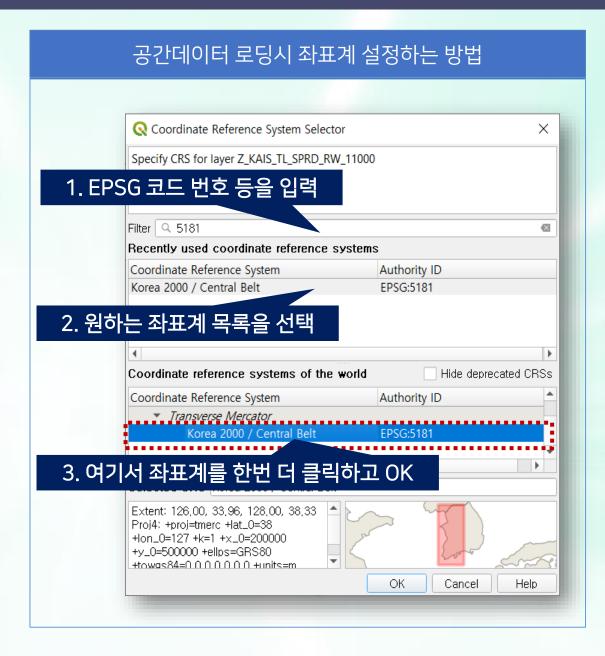
// 2014년 1월 21일 신상희 추가 *네비게이션용 KATEC 좌표계(KOTI-KATEC) EPSG 없음. 비공식 좌표계임. +proj=tmerc +lat_0=38 +lon_0=128 +k=0.9999 +x_0=400000 +y_0=600000 +ellps=bessel +units=m +no_defs +towgs84=-115.80,474.99,674.11,1.16,-2.31,-1.63,6.43

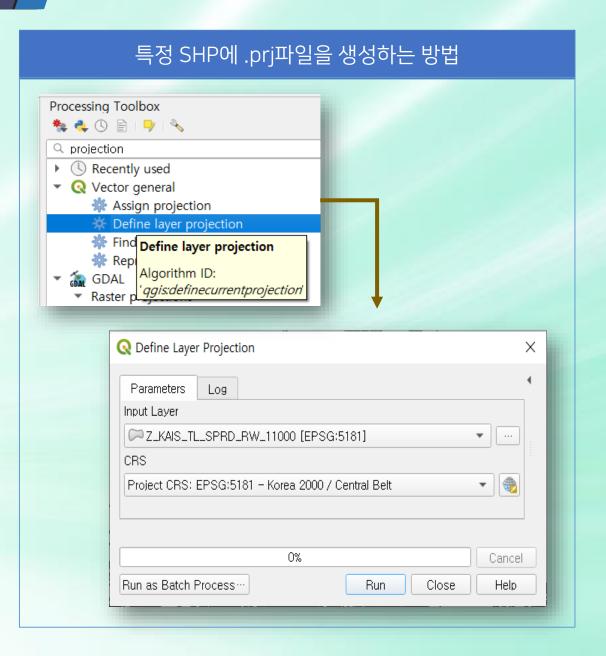

QGIS에서 한국측지계 적용


- QGIS → Settings → Custom Projections 선택
 - + 버튼을 누른 후, Name에는 검색하기 쉬운 이름을, Parameter에는 사이트에서 복사한 변환계수 내용을 붙여넣고 OK
 - 이후 해당 좌표계 공간데이터 로딩시 좌표계 정의 화면에서 등록한 이름으로 찾아 지정해주면 됨

행정구역 데이터 로딩


- 행정구역 데이터의 압축을 해제하면 아래 왼쪽 그림과 같이 같은 파일명을 가진 여러 개의 파일이 나타남
- QGIS를 실행하여 Open Data Source Manager를 통해 해당 shp파일을 지정하여 추가하면 됨




QGIS에서의 좌표계 확인

- 좌표계가 정의된(.prj 파일이 있는) SHP 등의 공간데이터를 로딩
- 레이어 더블클릭 또는 컨텍스트 메뉴의 속성(Properties) 메뉴 〉Information 탭에서 CRS에 좌표계 정보 제공

QGIS에서 공간데이터의 좌표계 설정

